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Let ¢ be a nonnegative, even and continuous function on [—r, r],
decreasing on [0, r] and such that ¢(0) = [ and 0 << ¢{t) < [ for 0 < ¢ < r.,
For a continuous function fon / == [a, b] with b — a = r, let

+b

KAfox)=po | f@) et x)dt, 0= 1,2, (1.1

“a

where
Vo, =2 ' g"(t) dr.
"0

Linear positive operators of this form were introduced by Korovkin in
his book “Linear Operators and Approximation Theory.” He has proved that

lim K,(/, v) = f(x),

uniformly on every interval I, == [a | 8, b — 8], where 0 << & << (b — a).
Many special, well known linear positive operators are of essentially this
form.
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We have, for instance,

@t) ~ e ", 0 r- = (Weierstrass [1]);
@(t) = 1 — 13 roo [Landau [2]):
@(r) = 1 - 12, ook 1, 2. (Mamedov [3]):
plt) = e ', 0- r- > (Picard);
@lt) = e " 0 r - = (Bui, Fedorov, Cervakov [4]);
@) - cosi(t/2), A (de la Vallée--Poussin [5]);
glr)y = Hyx), 0- r (Mirakian [6]).

Here [y(x) =- S o (x/2)%/(2k) is the Bessel function of imaginary
argument. Mirakian has also studied linear positive operators generated by
@(t) = 1/(t), where (1) = 1 + ¥, | ¢,12", assuming that all the coefficients
¢, are positive and that the series converges on [—r, r].

The aim of this paper is to study the degree of approximation of f by
linear positive operators K,(f). Using an inequality of Shisha and Mond
(see [7, 8]) we shall prove first the following result.

Forn == 1,2,.... we have

‘ Kn(f) ’".f ;l(; B 2&)1-(,[1,,,) T f ;l 8 Zf"nz (12)
where

. Loty di
Br™ == T .
o (t)dt

Here || g lg = sup{ g(x) : x € E}, and w, is the modulus of continuity of 1.

The degree of approximation thus depends on how fast the sequence (u,)
converges to zero. We shall show here that this depends on the asymptotic
behavior of the function ¢ in the neighborhood of zero. Generally speaking,
the faster ¢(x) approaches 1 as x — 0, the slower n,, approaches 0 as n — oc.
More precisely, we have the following result:

If

lim | = %)
X204 xX°

where 0 < ¢ << wand 0 < o < oo, then

fy = OV, (n —> o0). (1.3)
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From (1.2) and (1.3) we obtain immediately our first main result:

THEOREM . Let ¢ be a nonnegative, even and continuous function on
[—r. r], decreasing on [0, r}, such that @) =1 and 0 < @lx) <1 if
0 < x << r. For every fe Cla, b}, 0 << b — a < r, let K,(f) be defined by
(1.1). If, for some x = Q and ¢ > 0,

lim =9 P
X0 xo

then there exist positive numbers L(p), M(p) and N(¢) such that
CKASY = il == L) wdn Yy 4 M@ Sl 0 R (1.4)
Jor every n 2= N(g).

As corollaries of Theorem | we obtain the following results valid for
xela+8,b—38]and n == N(¢):

If ¢ is the kernel of Weierstrass, Landau, de la Vallée-Poussin or Mirakian,
we have

lim L7

5 0 < ¢ <0 oo
X0 X

and so
:: Kn(f) “.f‘“/é (\< L((P) wf'(’771/2) - M((owf‘l 87&2”71'

If ¢ is the kernel of Mamedov, we have

and so
| KA fY — Sy < L{p) wln™2F) 4 M(@)I|fliy 8-2n=1 7%
If ¢ is the kernel of Picard or, more generaily, of Bui, Fedorov and
Cervakov, then

= p(x)
1!%1 T !

and, consequently,
LK) — [l < Llg) wn™) + M)l f1l; 622",

Finally, we shall show that Theorem 1 cannot be essentially improved in
the class Cpla, b] of continuous functions f on [, b] which have the property
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that w,(h) == () for every h .- 0. Here £( =0) is a fixed modulus of
continuity, 1.e., a continuous, increasing and subadditive function on [0, =)
with £(0) - 0.

Supposing that ¢ satisfies the same hypotheses as in Theorem |, we have
as our second main result the following.

THEOREM 2. Let
An(‘gg) = Sup“: Kn(f) /‘ }l(, :./'6 C‘lz[aa h] a”(/ 1/ o ! :
Then there exist positive numbers p(q, £2), P(g, £2) and N(¢. ) such that

4,82

0 R /)(()[?, Q) - Q(H\l";) : (S ZP((P, Q) <. U (15)

for all n - N(g, Q).

From Theorem 2 we can obtain immediately the following corollaries.

COROLLARY 1. For every function e Cyla, b] with | f; . we hare

KAL) = Sl 8Pl ) Lt (1.6)

for all n - N(g, ), and the sequence (£(n='")) cannot be replaced by any
sequence (I',) of positive numbers for which

lim inf o0,
H v

Q1)

To see this, suppose that there were a positive number Q such that we had
i Kn(f) f Is Qpn

for every f'¢ Cola, b] with | /1, ~. 1, and all n -~ N. Then, by Theorem 2,
we would have, for all # = max(N, N(qg, £2)). the inequality

or,  4,82) - plg. Q) Qn" ),

and so

lim inf — I e, Q) 0.

woe QY 0

For some functions £, such as Q) =/, 0 < o ~. 1. we can make a
slightly stronger statement.
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COROLLARY 2. Let Q be a decreasing, continuous and subadditive function
on [0, o), with Q(0) — 0, such that

lim 4h)

<0 ~iQ-(h) 0ol (4.9

for every /1 = 0. Then (1.6) holds for every f'e Cola, b) with| fi, - 1. and the
sequence (n~'") cannot be replaced by any sequence (y,) of positive numbers
such that

Iil:ii/nfn] v, == 0.

This result, too, is a very simple consequence of Theorem 2. Assuming that
there exists a positive number Q such that

‘i Kn(f) o / 1/5 ’t: QQ(VH)~

for every f'e Cyla, b] with || /7, < I, we find, by Theorem 2, that
QQ(‘}/H) & An(Q) :\ /7(97‘» ‘Q) Q(nil’l) — /7((P, Q) 'Q (Jiﬂ_)

Let (n;) be such that n}c/"y"k — 0 (k -> ). Given an M > (Q/p(p, 2))'°. we
can find an Ny, such that

—1%* M for all k = /V_M .
I’lk' Y.

We have then, by the monotonicity of £,

0y, ) = plg, 2) QAMy,)  forallk = Ny,
and so

0 = plo, ) lim -Q(M—%"“) (o0, ) M
=3 . = p 2
- PP L 'Q(‘y'nk) P,

which is impossible, since M > Q/p{¢, £2).

Condition (1.7), although not the most general, is certainly necessary for
the validity of Corollary 2. To show that Corollary 2 is false without
Condition (1.7), consider the function

so, h =0,
Q,(h) = I

. - <7 o1
| Togtijmy = O h =t

\
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It is easy to see that £, is a modulus of continuity which does not satisfy
Condition (1.7) since

. Q44

lim =2

w0y Lo(h)

for every /1 > 0. This modulus of continuity does not distinguish asymp-
totically between the sequences (n") and (1 7) as far as the degree of con-
vergence is concerned, since

Consequently, in the estimate
VKAL) = frly o 075 P g, £3) L)

we can replace the sequence (1777/*) by any sequence (n ) with ¢ ~ - 0, without

changing the degree of convergence. We have actually in this case the estimate
Lo . xd2P( @, £2y)
K IR il VA

l n(f) f ! 13 lOg P

for all fe Cy fa, b] with | f1, - 1 and for all n .= N(g, £2,). However, in
view of Corollary 1, the sequence (1/log ) cannot be replaced by any sequence
(I',) such that lim inf, ., I', logn = 0.

2.
The proofs of Theorems 1 and 2 are based on two lemmas.

LEMMA 1. Let ¢ be a nonnegative, even and continuous function on
[—r. 7). For every fe Cla,b], 0 << b - a -7 r, let K([) be defined by (1.1).
We have then, forn = 1, 2,....

,. Kn(/) - .kal,; e 2wf(,'¢"l) ' If II 8<2f"'712~
where

. Jot*err) dt

Hen "‘r) e (1) df -

Proof.  Since K, is a linear positive operator on Cla, b], into Cla, b], we can
apply the inequality of Shisha and Mond [3] and obtain, for every x € [a, 5],

IKu(f, x) = fOf s (1 Ky x) wglpn) + 110 K, x) — 1 (20)
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where
1,2 =2 max{K,((t — x)%, x) 1 a < x < b}.

We have, for every x € [a, b],

b
K, (1, x) == p,,J @t — X) dt

a
=
a—=m

b—a
= Pa f @™(t) dt.
—(b—a)

sb—a

| @"(1) di

Since b — a =< r, and ¢ is even, we have

AT

K (1, x) < an (1) dr = 1. (2.2)

.
Next,

sh—r

K1, x) = p, (1) dt

= P J @ (1) dt — py, fw @"(t)dt — py, fh(M) @(r) dt.

- —

Since the first term on the right side is 1, and since ¢ is even, it follows that
forxel, ={a+ 6,b—38],0 <8 < }b — a), we have

KA x) — L - p, { ™(t) dt -+ pnf @™t} dt

Jp.

20, [ gryar

o

<L 2672, f 12pn(t) dt.

v

Hence, for x € I, we have
,
K (1, x) — 1} < 2872, f 12n(1) dt. (2.3)
0

Finally, for x e I = [a, b], we have
b
Kot = )%, %) = pu [ (1 — )2 "t — x) di
b—x
—pu | rer)dr

b—-a
Spa| gy
—(b—r)
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Hence,

KNt~ x™,x) - p, ‘ PPy de ot (2.4)

and Lemma 1 follows from (2.1)-(2.4).

Lemya 2. Let ¢ be a nonnegative and decreasing function on [0, r].
@0y == 1.0 = @x) < 1ifQ < x - r, and

. | (\) ~

lim - #1 ¢ (2.5)

V0 A :
where and ¢ are positive numbers. Then, for everv B - O and n - 1. 2.

we have
B(‘&, B)(I?(’)"(‘”””‘ o (‘2(.) (3 1) ¢ 2oy

: ‘ tﬁ(P"(’)dT = A(:l‘. B)(”(A wily /.lf.1‘) ,,,.,x:" (26)

~0
where A(x, 8) and Blw, B) are positive numbers.

Proof.  From (2.5) follows that we can find an v, €(0. (b - «)/2) such that

e Lo,
As

PN —

whenever 0 < x . m; <r. Let y = min (n,.(1/2¢)* ). Then O <« 5 -
(b — a)/2 < r and, for 0 < x = %, we have

0| —2cx @(x) I — lexo,

Since ¢ is decreasing on [0, r] and B = 0. we have

“rtﬁtp”(t)dl | tBor(t)dr |- ¢"(n) ’Vrﬂ’ dt
Yo b’

v

"y “ ’.;'i 1 . l M

Jn 9 (\l - %ct) de BoT (“l s ('n“)) .

Since 0 = 1 — lers < e=*22_ it follows that

r T
[ sgrydr < | et dr yogpotenee
o Y0

‘\.H(, Pl d.\_ : ,./3 ; 1(’ —Nrn”‘,"z'.

ne Yo

2 {(B11) /o an(ne, 2}
> ( )
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and the right-hand side of (2.6) follows with

> O
\»B e—-.:r'Y

A, B) 20100 dx.

v 0
Next,

|' tgntydt - | tPen(t) dt
Y0

]
: | (1~ ety di

<0
) (2(7)—7(/%1);’\ ~2en®

X <0

X((ﬁ»&]),’w\)"l(l - v\/)ﬂ (l,.X.
Since 2¢mr =0 1, we have

|' ' tBen(t) dt
<0

o) Br1hia a1 -1 , \
(2¢) -1 “ XU D] Yy — I NUBFD L] e (/,\‘)
o

X . /
2em%

ey B T(B — /ey I(n A 1) (2(’)~mﬂ:(l Y
Tin— 1T+ B+ D) B+l Y

Now, for | < y < x, we have

Rl P Tix B x*-1/2py
- <

Fter T () e e

(see [9]). Using the last inequality, we find that

e B (” } ﬁﬁl_} L l)(B—H)m(l ; (_@+ 1)/@)717‘1/2

® Yol

) L L 1 (B--1) ja
ot e (2 ,, ,@)) .

89

We have also | — 2en» =7 27", Hence,

r e} {B i1} e —{B+1)/n
( tﬁ(pﬂ([) d’ T (2() —0 (3+1) /a (2 *‘T B ]7) . (2(,)_(/.],‘&1)"\ (.72”1-7:“’
©0 X X
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and the left side of (2.6) follows with

q 3 (1)«
B(«, ,8) = x ‘2*(1)‘11J‘\(2 : Bl,) ) .

X

1.2

Proof of Theorem 1. By Lemma | we have. for u
| Kn(f) o .fi,:l‘s wa(f"n) / ’w I 5 72“”2,
where

. J " ”(t)dr

P” f Y
By Lemma 2 we have, for all » sufficiently large,

(«x, 2)(/1() e et
B(x O)(ne) 2() “‘( 2

2 -

f'Ln_ e

Hence,

; A A((Y 2) o -
1 2o A7 25 o
11m SLlp n ,u,, BN ((\ 0)

and Theorem 1 follows.

Proof of Theorem 2. For every fe Cyla. b] such that I' f1, I, we have
by Theorem |

K f) — Sl L((p).Qn Ly o M) d72n 2,
for every n > N(¢). Hence, the inequality.
A,8) << L{g) 2(h 1) 4 M(g)d *n-1 .

holds for every n = N(g). Since £2 is a modulus of continuity =0, we can
find a positive number ¢ such that Q(/1) > ch for every /# .- 0. Hence, for
every n = N(g) we have

4,(8) < (L(g) ~ M(p)d 2y Qn 1)

and the right side of (1.5) follows.
Next, let
() x—(a+ b)2)

flx) = TR0 —ap) x € [a, b].
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Since Q2 is a modulus of continuity, it follows easily that f'e Ca, b] and that
“ 0, == 1. Consequently, we have

4,08) = Sy o LK a -+ b)2) — f(la b b))2),

4,82y = K (f (a — b)/2). (2.7)

Using the definition of the operator K, . we find that

N ] (R P e I

Al b by
DR RCCRTRE DY
s(b—u) /2
8, ‘ Q1) gn(r) dt,
~0
where
8, = gty ! (2.8)

"TQb— a2 2206 = a)2) [Tty de

Now, as in the proof of Lemma 2, we can find an 5 & (0, (b — a)/2) such that,
for 0 < x « 7, we have

e(x) = 1 — 2ext 72 0.

Forn = %= we have n 1 = % < (b — a)/2, and so

n—1la

b Q1) "(1) dt

Ko (£ 552) = 8.

“0

sn~la

=5, { QN — 2er) dr.,
o0

Since ¢ =% n1~ and 2 is a modulus of continuity, we have
Q(t .
2 _wf__) > nl/aQ(”-wl,m)

and so

[ n*”n
K, (_f; 1/}3) %Sﬂﬂlr’*!)(n*‘”‘) [ H1 = 2cto) dt.
‘ Y0
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But

"“V ) il 2etM) di (l - 2(—)1 ‘.u \ i dt l/r 2 (l —25)

] ns Jy 2 . i

therefore, from the preceding inequality it follows that

K pa o h l 1§ Oty (1 2y for ax(y g
s (f, o ) LY ) ( - ) or n max(n . 2e)
From this inequality and (2.7) we get

.. 4 p T

lim mf—lﬂt@[ o fiminf et Oy - (2.9)

non Sy 4 "o
Finally. using (2.8) and Lemma 2. we find that

15, — 20 (ﬁfzi’?) [Moryde 22 (20 9 G 0y e,

Yo 2
lLe.,

, ]

300 A D e e )

1 1in § J -

n

and it follows that

A
N 1 ~1/a S o .,,,,E,,,,, . o)
ln}lwyl/nfn Ou . S0(b —a)2) A(x.0) (2.10)
Combining (2.9) and (2.10), we see that
doa,e 2¢
lim inf 422 e

no Q1) 8Q((h—a)/2) A(v, 0)

and Theorem 2 is proved.
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