On the Precision of Uniform Approximation of Continuous Functions by Certain Linear Positive Operators of

 Convolution Type

 Convolution Type}

R. Bolanic*
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

AND

O. Shisha

Aerospace Research Laboratories, Wright-Patterson AFB, Ohio 454.34
Received January 29, 1971

DEDICATED TO PROFESSOR I. J. SCHOENBERG
on the occasion of his 70th birthday
1.

Let φ be a nonnegative, even and continuous function on $[-r, r]$, decreasing on $[0, r]$ and such that $\varphi(0)==1$ and $0 \leqslant \varphi(t)<1$ for $0<t \leqslant r$.

For a continuous function f on $I==[a, b]$ with $b-a \leq r$, let

$$
\begin{equation*}
K_{n}(f, x)=\rho_{n} \int_{\|}^{b} f(t) \varphi^{\prime \prime}(t \cdots x) d t, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

where

$$
1 / \rho_{n}=2 \int_{0}^{r} \varphi^{\prime \prime}(t) d t
$$

Linear positive operators of this form were introduced by Korovkin in his book "Linear Operators and Approximation Theory." He has proved that

$$
\lim _{n \rightarrow \infty} K_{n}(f, x)==f(x)
$$

uniformly on every interval $I_{\delta}=[a \cdot \delta, b-\delta]$, where $0<\delta<\frac{1}{2}(b-a)$.
Many special, well known linear positive operators are of essentially this form.

[^0]We have, for instance,

$$
\begin{array}{llrr}
\varphi(t)=e^{r^{2}}, \quad 0 \cdots r & \text { (Weierstrass [1]); } \\
\varphi(t)=1-t^{2}, & r \cdots 1 & \text { [Landau [2]); } \\
\varphi(t)=1-t^{2 k}, & r & 1, k=1,2 \ldots & \text { (Mamedov [3]); } \\
\varphi(t)=e^{t}, & 0 & r & \infty \\
\varphi(t)=e^{1 / 2}, & 0 & r & \infty \\
\text { (Bui, Fedorov, Červakov [4]); } \\
\varphi(t) \cdots \cos ^{2}(t / 2), & r & \pi & \text { (de la Vallée-Poussin [5]); } \\
\varphi(t)=1 / I_{0}(x), & 0 & r & x
\end{array}
$$

Here $I_{0}(x)=\sum_{k=0}^{x}(x / 2)^{2 k} /(2 k)$ is the Bessel function of imaginary argument. Mirakian has also studied linear positive operators generated by $\varphi(t)=1 / \psi(t)$, where $\psi(t)=1+\sum_{k=1}^{x} c_{k} t^{2 l i}$, assuming that all the coefficients c_{k} are positive and that the series converges on $[-r, r]$.

The aim of this paper is to study the degree of approximation of f by linear positive operators $K_{n}(f)$. Using an inequality of Shisha and Mond (see [7, 8]) we shall prove first the following result.

For $n=1,2, \ldots$, we have

$$
\begin{equation*}
K_{n}(f)-f I_{I_{\delta}}=2 \omega_{f}\left(\mu_{n}\right) \cdots f l_{I} \delta^{-2} \mu_{n}^{2} \tag{1.2}
\end{equation*}
$$

where

$$
\mu_{n}^{2}=\frac{\int_{0}^{r} t^{2} \varphi^{\prime \prime}(t) d t}{\int_{0}^{r} \varphi^{n}(t) d t}
$$

Here $\|g\|_{E}==\sup \{g(x): x \in E\}$, and ω_{f} is the modulus of continuity of f.
The degree of approximation thus depends on how fast the sequence $\left(\mu_{n}\right)$ converges to zero. We shall show here that this depends on the asymptotic behavior of the function φ in the neighborhood of zero. Generally speaking, the faster $\varphi(x)$ approaches 1 as $x \rightarrow 0$, the slower μ_{n} approaches 0 as $n \rightarrow \infty$. More precisely, we have the following result:

If

$$
\lim _{x \rightarrow 0+} \frac{1-\varphi(x)}{x^{2}}
$$

where $0<c<\infty$ and $0<\alpha<\infty$, then

$$
\begin{equation*}
\mu_{n}=\mathbb{O}\left(n^{\mathbf{1} / x}\right), \quad(n \rightarrow \infty) \tag{1.3}
\end{equation*}
$$

From (1.2) and (1.3) we obtain immediately our first main result:

Theorem 1. Let q be a nonnegative, even and continuous function on $[-r, r]$, decreasing on $[0, r]$, such that $\varphi(0)=1$ and $0 \leqslant \varphi(x)<1$ if $0<x \leqslant r$. For every $f \in C[a, b], 0<b-a<r$, let $K_{n}(f)$ be defined by (1.1). If, for some $x>0$ and $c>0$,

$$
\lim _{x \rightarrow 0+} \frac{1-\varphi(x)}{x^{-a}}=c
$$

then there exist positive numbers $L(\varphi), M(\varphi)$ and $N(\varphi)$ such that

$$
\begin{equation*}
K_{n}(f)-f\left\|_{0} \leqslant L(\varphi) \omega_{f}\left(n^{1 / 2}\right)+M(\varphi)\right\| f \|_{l} \delta^{-2} n^{-2 n} \tag{1.4}
\end{equation*}
$$

for every $n \geqslant N(\varphi)$.
As corollaries of Theorem 1 we obtain the following results valid for $x \in[a+\delta, b-\delta]$ and $n \geqslant N(\varphi):$

If φ is the kernel of Weierstrass, Landau, de la Vallée-Poussin or Mirakian, we have

$$
\lim _{x \rightarrow 0} \frac{1-\varphi(x)}{x^{2}}-c, \quad 0<c<\infty,
$$

and so

$$
K_{n}(f)-\left.f\right|_{I_{\delta}} \leqslant L(\varphi) \omega_{f}\left(n^{-1 / 2}\right)-M(\varphi)\|f\|_{I} \delta^{-2} n^{-1} .
$$

If φ is the kernel of Mamedov, we have

$$
\lim _{x \rightarrow 0} \frac{1-\varphi(x)}{x^{2 t}}=1
$$

and so

$$
\left\|K_{n}(f)-f\right\|_{\iota_{\delta}} \leqslant L(\varphi) \omega_{f}\left(n^{-1 / 2 /}\right)+M(\varphi)\|f\|_{I} \delta^{-2} n^{-1 / k}
$$

If φ is the kernel of Picard or, more generally, of Bui, Fedorov and Červakov, then

$$
\lim _{x \rightarrow 0+} \frac{1-\varphi(x)}{x^{1 / k}}=1
$$

and, consequently,

$$
K_{n}(f)-f\left\|_{\hat{\delta}} \leqslant L(\varphi) \omega_{f}\left(n^{-k}\right)+M(\varphi)\right\| f \|_{I} \delta^{-2} n^{-2 k}
$$

Finally, we shall show that Theorem 1 cannot be essentially improved in the class $C_{\Omega}[a, b]$ of continuous functions f on $[a, b]$ which have the property
that $\omega_{f}(h) \leq \Omega(h)$ for every $h \geq 0$. Here $\Omega(=0)$ is a fixed modulus of continuity, i.e., a continuous, increasing and subadditive function on $[0, x$) with $\Omega(0)=0$.

Supposing that φ satisfies the same hypotheses as in Theorem 1, we have as our second main result the following.

Theorem 2. Let

$$
\Delta_{n}(\Omega)=\sup \left\{K_{n}(f) \quad f t_{0}: f \in C_{\Omega}[a, b] \text { and } f: 1 ;\right.
$$

Then there exist positive numbers $p(q, \Omega), P(q, \Omega)$ and $N(q, \Omega)$ such that

$$
\begin{equation*}
0 \cdots p(\varphi, \Omega) \div \frac{\Delta_{n}(\Omega)}{\Omega\left(\frac{n^{1 / n}}{1 / 2}\right.} \because \delta^{-2} P(\varphi, \Omega)<\alpha \tag{1.5}
\end{equation*}
$$

for all $n=N(p, \Omega)$.
From Theorem 2 we can obtain immediately the following corollaries.
Corollary 1. For every function $f \in C_{Q}[a, b]$ with $\|_{1} f$ 1, we have

$$
\begin{equation*}
K_{n}(f)-f I_{i_{0}} \quad \delta^{-2} P(\%, \Omega) \Omega\left(n^{-1 / 9}\right) \tag{1.6}
\end{equation*}
$$

for all $n \approx N(\varphi, \Omega)$, and the sequence $\left(\Omega\left(n^{-1,2}\right)\right)$ cannot be replaced by any sequence $\left(\Gamma_{n}\right)$ of positive numbers for which

$$
\liminf _{n=1} \frac{\Gamma_{n}}{\Omega\left(n^{-1}\right)} \quad 0
$$

To see this, suppose that there were a positive number Q such that we had

$$
K_{n}(f) \cdots f H_{\delta}=Q \Gamma_{n}
$$

for every $f \in C_{52}[a, b]$ with $f, 1$, and all $n=N$. Then, by Theorem 2, we would have, for all $n \geqslant \max (N, N(q, \Omega))$, the inequality

$$
Q \Gamma_{n}>\Delta_{n}(\Omega)=p(\varphi, \Omega) \Omega\left(n^{-1}\right)
$$

and so

$$
\liminf _{n} \frac{\Gamma_{n}}{\Omega\left(n^{-1,3}\right)}=\frac{p(q, \Omega)}{Q}=0
$$

For some functions Ω, such as $\Omega(h)=h^{\sigma}, 0<\sigma<1$, we can make a slightly stronger statement.

Corollary 2. Let Ω be a decreasing, continuous and subadditice function on $[0, \infty)$, with $\Omega(0)-0$, such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\Omega(A h)}{\Omega(h)} \quad A^{c}, \quad 0<\sigma<1, \tag{1.7}
\end{equation*}
$$

for every $A=0$. Then (1.6) holds for every $f \in C_{\Omega}[a, b]$ with $f \|_{I}=1$, and the sequence $\left(n^{-1}\right)$ cannot be replaced $b y$ any sequence $\left(\gamma_{n}\right)$ of positive numbers such that

$$
\liminf _{n} n^{1 / n} \gamma_{n}=0
$$

This result, too, is a very simple consequence of Theorem 2. Assuming that there exists a positive number Q such that

$$
\| K_{n}(f)-\cdots f I_{I_{\delta}} \leqslant Q \Omega\left(\gamma_{n}\right),
$$

for every $f \in C_{g}[a, b]$ with $f, \leqslant 1$, we find, by Theorem 2, that

$$
Q \Omega\left(\gamma_{n}\right) \geqslant \Delta_{n}(\Omega) \geqslant p(\varphi, \Omega) \Omega\left(n^{-1 / \sim}\right)-p(\varphi, \Omega) \Omega\left(\frac{\gamma_{n}}{n^{1 / \gamma} \gamma_{n}}\right) .
$$

Let $\left(n_{k}\right)$ be such that $n_{k}^{1 / x} \gamma_{n_{k}} \rightarrow 0(k \rightarrow \infty)$. Given an $M>(Q / p(\varphi, \Omega))^{1 / \sigma}$. we can find an N_{M} such that

$$
\frac{1}{n_{k}^{1 / 2} \gamma_{n_{k}}} \geqslant M \quad \text { for all } k \geqslant N_{M} .
$$

We have then, by the monotonicity of Ω,

$$
Q \Omega\left(\gamma_{n_{k}}\right) \geqslant p(\phi, \Omega) \Omega\left(M \gamma_{n_{k}}\right) \quad \text { for all } k \geqslant N_{M},
$$

and so

$$
Q \geqslant p(p, \Omega) \lim _{k: k} \frac{\Omega\left(M \gamma_{n_{k}}\right)}{\Omega\left(\gamma_{n_{k}}\right)}=p(p, \Omega) M^{\sigma}
$$

which is impossible, since $M^{\sigma}>Q / p(\varphi, \Omega)$.
Condition (1.7), although not the most general, is certainly necessary for the validity of Corollary 2 . To show that Corollary 2 is false without Condition (1.7), consider the function

$$
\Omega_{0}(h)==\left\{\begin{array}{l}
0, \quad h=0, \\
\frac{1}{\log (1 / h)}, \quad 0<h \leqslant e^{-1} .
\end{array}\right.
$$

It is easy to see that Ω_{0} is a modulus of continuity which does not satisfy Condition (1.7) since

$$
\lim _{h \rightarrow 0} \frac{\Omega_{0}(A h)}{\Omega_{0}(h)}=1
$$

for every $A>0$. This modulus of continuity does not distinguish asymptotically between the sequences $\left(n^{-\prime \prime}\right)$ and $\left(n^{\prime \prime}\right)$ as far as the degree of convergence is concerned, since

$$
\lim _{n \neq *} \frac{\Omega_{0}\left(n^{\prime \prime}\right)}{\Omega_{0}\left(n^{-q}\right)}=\frac{q}{p}
$$

Consequently, in the estimate

$$
K_{n}(f) \cdots f u_{0} \quad \delta^{-2} P\left(q, \Omega_{0}\right) \Omega_{0}\left(n^{-1 ; n}\right)
$$

we can replace the sequence $\left(n^{1,2}\right)$ by any sequence $\left(n^{44}\right)$ with $q \cdots 0$, without changing the degree of convergence. We have actually in this case the estimate

$$
K_{n}(f)-\left.f\right|_{I_{i j}} \leqslant \frac{\alpha \delta-2 P\left(\varphi, \Omega_{0}\right)}{\log n}
$$

for all $f \in C_{\Omega_{\delta}}[a, b]$ with $f f, 1$ and for all $n \geqslant N\left(\varphi, \Omega_{0}\right)$. However, in view of Corollary 1 , the sequence ($1 / \log n$) cannot be replaced by any sequence $\left(\Gamma_{n}\right)$ such that $\lim \inf _{n \rightarrow x} \Gamma_{n} \log n=0$.
2.

The proofs of Theorems 1 and 2 are based on two lemmas.

Lemma 1. Let φ be a nonnegative, even and continuous function on $[-r, r]$. For every $f \in C[a, b], 0<b \cdots a \cdots r$, let $K_{n}(f)$ be defined by (1.1). We have then, for $n=1,2, \ldots$.

$$
K_{n}(f)-f I_{\dot{j}}-2 \omega_{f}\left(\mu_{n}\right) ; f \|_{\delta} \delta^{-2} \mu_{n}^{2}
$$

where

$$
\mu_{n}^{2}=\frac{\int_{0}^{r} t^{2} \varphi^{n}(t) d t}{\int_{0}^{r} \varphi^{n}(t) d t}
$$

Proof. Since K_{n} is a linear positive operator on $C[a, b]$, into $C[a, b]$, we can apply the inequality of Shisha and Mond [3] and obtain, for every $x \in[a, b]$,

$$
\begin{equation*}
\left|K_{n}(f, x)-f(x)\right| \leqslant\left(1+K_{n}(1, x)\right) \omega_{f}\left(\mu_{n}\right)+\left.f\right|_{1} K_{n}(1, x)-1 \tag{2.1}
\end{equation*}
$$

where

$$
\mu_{n}^{2} \geqslant \max \left\{K_{n}\left((t-x)^{2}, x\right): a \leqslant x \leqslant b\right\} .
$$

We have, for every $x \in[a, b]$,

$$
\begin{aligned}
K_{n}(\mathrm{I}, x) & =\rho_{n} \int_{a}^{b} \varphi^{\prime \prime}(t-x) d t \\
& =\rho_{n} \int_{(t-x)}^{b-x} \varphi^{n}(t) d t \\
& \leqslant \rho_{n} \int_{-(b-a)}^{b-a} \varphi^{n}(t) d t .
\end{aligned}
$$

Since $b-a \leqslant r$, and φ is even, we have

$$
\begin{equation*}
K_{n}(1, x)<\rho_{n} \int_{-r}^{r} \varphi^{n}(t) d t=1 . \tag{2.2}
\end{equation*}
$$

Next,

$$
\begin{aligned}
K_{n}(1, x) & =\rho_{n} \int_{a-x}^{b-a} \varphi^{n}(t) d t \\
& =:=\rho_{n} \int_{-, r}^{r} \varphi^{n}(t) d t-\rho_{n} \int_{b-x}^{c} \varphi^{n}(t) d t-\rho_{n} \int_{-r}^{-(x-a)} \varphi^{\prime \prime}(t) d t .
\end{aligned}
$$

Since the first term on the right side is 1 , and since φ is even, it follows that for $x \in I_{\delta}=[a+\delta, b-\delta], 0<\delta<\frac{1}{2}(b-a)$, we have

$$
\begin{aligned}
K_{n}(1, x)-1 & =\rho_{n} \int_{b-x}^{r} \varphi^{n}(t) d t+\rho_{n} \int_{x-a}^{r} \varphi^{n}(t) d t \\
& <2 \rho_{n} \int_{o}^{r} \varphi^{n}(t) d t \\
& \leqslant 2 \delta^{-2} \rho_{n} \int_{\delta}^{r} t^{2} \varphi^{n}(t) d t .
\end{aligned}
$$

Hence, for $x \in I_{\delta}$, we have

$$
\begin{equation*}
K_{n}(1, x)-1 \leqslant 2 \delta^{-2} \rho_{n} \int_{0}^{r} t^{2} \varphi^{n}(t) d t \tag{2.3}
\end{equation*}
$$

Finally, for $x \in I=[a, b]$, we have

$$
\begin{aligned}
K_{n}\left((t-x)^{2}, x\right) & =\rho_{n} \int_{a}^{b}(t-x)^{2} \varphi^{n}(t-x) d t \\
& =\rho_{n} \int_{a-x}^{b-x} t^{2} \varphi^{n}(t) d t \\
& \leqslant \rho_{n} \int_{-(b-a)}^{b-a} t^{2} \varphi^{n}(t) d t .
\end{aligned}
$$

Hence,
and Lemma I follows from (2.1)-(2.4).
Lemma 2. Let ψ be a nonnegative and decreasing function on $[0, r]$, $\varphi(0)=1.0<\varphi(x)<1$ if $0<x \quad r$, and

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{p(x)}{x^{\prime \prime}} \tag{2.5}
\end{equation*}
$$

where $:$ and c are positive numbers. Then, for every $\beta \cdot 0$ and $n=1,2 \ldots$ we have

$$
\begin{align*}
& B(x, \beta)(n c)^{-(\beta+1) \alpha}-(2 c)^{(3-1)} e^{2 \pi z^{2}} \\
& \int_{0}^{r} t^{\beta} q^{n}(t) d t \leqslant A(x, \beta)\left(n c^{(t)}\right) \quad r^{2=1} e^{\prime 2} . \tag{2.6}
\end{align*}
$$

where $A(\alpha, \beta)$ and $B(\alpha, \beta)$ are positive numbers.
Proof. From (2.5) follows that we can find an $\eta_{1} \epsilon(0,(b \cdot a) / 2)$ such that

$$
\frac{1}{2} c \frac{1-\varphi(x)}{x^{1}} 2 c .
$$

whenever $0<x<\eta_{1}<r$. Let $\eta=\min \left(\eta_{1},(1 / 2 c)^{1}\right)$. Then $0<\eta<$ $(b-a) / 2<r$ and, for $0<x<\eta$, we have

$$
0=1-2 c x^{1} \quad p(x) \quad 1-\frac{1}{2} c x^{1}
$$

Since φ is decreasing on $[0, r]$ and $\beta \geqslant 0$. we have

$$
\begin{aligned}
\int_{0}^{r} t^{\beta} q^{n}(t) d t & \leqslant \int_{0}^{n} t^{\beta} \varphi^{n}(t) d t+q^{\prime \prime}(\eta) \int_{n}^{r} t^{\beta} d t \\
& \leqslant \int_{0}^{n \prime \prime} t^{\beta}\left(1-\frac{1}{2} c t^{n}\right)^{\prime \prime} d t:-\frac{r^{3-1}}{\beta+1}\left(1-\frac{1}{2} c^{\prime \prime}\right)^{\prime \prime}
\end{aligned}
$$

Since $0 \quad 1-{ }_{2}^{1} c t^{n} \leqslant e^{-c t^{x} / 2}$, it follows that

$$
\begin{aligned}
\int_{0}^{r} t^{\beta} \varphi^{n}(t) d t \leqslant & \int_{0}^{n} t^{\beta} e^{-n c t^{\alpha} / 2} d t+r^{\beta \cdot 1} e^{\cdots m^{\alpha}, 2} \\
& \times\left(\frac{2}{n C}\right)^{(\beta+1) / 2} \int_{0}^{n\left(n e^{2}\right)} x^{-\beta, r^{\prime 2}} d x: r^{(\beta, 1} e^{-n\left(m^{\alpha} \alpha / 2\right.},
\end{aligned}
$$

and the right-hand side of (2.6) follows with

$$
A(\alpha, \beta)-2^{(\beta \cdot \beta) / \beta} \int_{0}^{\alpha} x^{\beta} e^{-x^{x}} d x
$$

Next,

$$
\begin{aligned}
\int_{0}^{r} t^{\beta} \varphi^{\prime \prime}(t) d t & =\int_{0}^{n} t^{\beta} \varphi^{n}(t) d t \\
& \geq \int_{0}^{\alpha} t^{\beta}\left(1-2 c t^{\alpha}\right)^{n} d t \\
& >\frac{(2 c)^{-(\beta+1) / \alpha}}{\alpha} \int_{0}^{2 e n^{\alpha}} x^{((\beta+1) / \alpha)-1}(1-x)^{n} d x .
\end{aligned}
$$

Since $2 c \eta^{2} \leq 1$, we have

$$
\begin{aligned}
& \int_{0}^{r} t^{\beta} \varphi^{n}(t) d t \\
& \quad \geqslant \frac{(2 c)^{-(\beta-1) / x}}{\alpha}\left(\int_{0}^{1} x^{((\beta+1) / \alpha)-1}(1-x)^{n} d x-\int_{2 c n^{x}}^{1} x^{((\beta+1) ; \alpha)-1}(1-x)^{n} d x\right) \\
& \quad=\frac{(2 c)^{-(e+1) / \alpha}}{x} \cdot \frac{\Gamma((\beta+1) / \alpha) \Gamma(n+1)}{\Gamma(n+1+(\beta+1) / \alpha)}-\frac{(2 c)^{-(\beta+1) / \alpha}}{\beta+1}\left(1-2 c \eta^{a}\right)^{n} .
\end{aligned}
$$

Now, for $1<y \leqslant x$, we have

$$
\frac{x^{x-1} e^{y}}{y^{y-1} e^{e^{x}}} \leqslant \frac{\Gamma(x)}{\Gamma(y)} \leqslant \frac{x^{x-1 / 2} e^{y}}{v^{y / 1 / 2} e^{x}}
$$

(see [9]). Using the last inequality, we find that

$$
\begin{aligned}
& \frac{\Gamma(n: 1+(\beta-1) / x)}{\Gamma(n+1)} \\
& \quad \leqslant e^{-(\beta+1) \alpha}\left(n+\frac{\beta+1}{\alpha}+1\right)^{(\beta+1) / \alpha}\left(1+\frac{(\beta+1) / \alpha}{n+1}\right)^{n+1 / 2} \\
& \quad \leqslant n^{(\beta+1) / \alpha}\left(2 \times \frac{\beta+1}{\alpha}\right)^{(\beta+1) / 2} .
\end{aligned}
$$

We have also $1-2 c \eta^{x} e^{-2 c \eta^{x}}$. Hence,

$$
\int_{0}^{r} t^{\beta} \varphi^{n}(t) d t \geqslant \frac{(2 c)^{-(\beta) 1) / \alpha}}{\alpha} n^{-(\beta+1) / \alpha}\left(2+\frac{\beta-1}{\alpha}\right)^{-(\beta+1) / \alpha}-(2 c)^{-(\beta+1) / \lambda} e^{-2 R c r^{\alpha}},
$$

and the left side of (2.6) follows with

$$
B(\alpha, \beta)=x^{12-(\beta+1) \cdot}\left(2 ; \frac{\beta}{x}\right)^{(1-1) \cdot x} .
$$

Proof of Theorem 1. By Lemma I we have, for $n=1,2 \ldots$

$$
K_{n}(f)-f I_{I_{0}} \leqslant 2 \omega_{f}\left(\mu_{n}\right) \quad f f_{f} \delta^{-2} \mu_{n}^{2}
$$

where

$$
\mu_{n}{ }^{2}=\frac{\int_{0}^{r} t^{2} \varphi^{\prime \prime}(t) d t}{\int_{0}^{r} \varphi^{n}(t) d t} .
$$

By Lemma 2 we have, for all n sufficiently large,

$$
\mu_{n}^{2} \leqslant \frac{A(\alpha, 2)(n c)^{-3}}{B(\alpha, 0)(n c)^{-1}}-\frac{r^{3} e^{n}}{(2 c)^{2}} e^{2, n}
$$

Hence,

$$
\limsup _{n \rightarrow \infty} n^{1 / 2} \mu_{n}^{2} \leqslant \frac{A(\alpha, 2)}{B(\alpha, 0)} c^{2}<\infty .
$$

and Theorem 1 follows.
Proof of Theorem 2. For every $f \in C_{o}[a, b]$ such that $f I_{1}$ I, we have by Theorem I

$$
K_{n}(f)-f I_{\delta} \leqslant L(\varphi) \Omega\left(n^{-1 / \alpha}\right)-M(\varphi) \delta^{-2} n^{2}
$$

for every $n \geqslant N(\varphi)$. Hence, the inequality,

$$
\Delta_{n}(\Omega) \leqslant L(\varphi) \Omega\left(h^{-1 / \alpha}\right)+M(\varphi) \delta^{2} n^{-1} \ddots .
$$

holds for every $n \geqslant N(\varphi)$. Since Ω is a modulus of continuity 0 , we can find a positive number c such that $\Omega(h) \geqslant c h$ for every $h \geqslant 0$. Hence. for every $n \geqslant N(\varphi)$ we have

$$
\Delta_{n}(\Omega) \leqslant\left(L(\varphi)-M(\varphi) \delta^{2} c^{-1}\right) S\left(n^{-1 x}\right)
$$

and the right side of (1.5) follows.
Next, let

$$
f(x)=\frac{\Omega(\mid x-(a+b) / 2)}{\Omega((b-a) / 2)}, \quad x \in[a, b] .
$$

Since Ω is a modulus of continuity, it follows easily that $f \in C_{\Omega}[a, b]$ and that $f,=1$. Consequently, we have

$$
\Delta_{n}(\Omega)>f I_{I_{0}} \geqslant \mid K_{n}(f,(a+b) / 2)-f((a+b) / 2),
$$

i.e.,

$$
\begin{equation*}
\Delta_{n}(\Omega) \Rightarrow K_{n}(f,(a-b) / 2) \tag{2.7}
\end{equation*}
$$

Using the definition of the operator K_{n}, we find that

$$
\begin{aligned}
K_{n}\left(f, \frac{a+b}{2}\right) & =\delta_{n} \int_{a}^{b} \Omega\left(\left\lvert\,-\frac{a+b}{2}\right. \|\right) \varphi^{\prime \prime}\left(t-\frac{a+b}{2}\right) d t \\
& =\delta_{n} \int_{(a t b) / 2}^{b} \Omega\left(t-\frac{a+b}{2}\right) \varphi^{\prime \prime}\left(t-\frac{a+b}{2}\right) d t \\
& =\delta_{n} \int_{0}^{(b-a) / 2} \Omega(t) \varphi^{n}(t) d t .
\end{aligned}
$$

where

$$
\begin{equation*}
\delta_{n}=\frac{\mu_{n}}{\Omega(b-a) / 2}=\frac{1}{2 \Omega((b-a) / 2) \int_{0}^{r} \varphi^{n}(t) d t} \tag{2.8}
\end{equation*}
$$

Now, as in the proof of Lemma 2, we can find an $\eta \in(0,(b-a) / 2)$ such that, for $0<x \leqslant \eta$, we have

$$
\varphi(x) \geq 1-2 c x=0
$$

For $n \geq \eta^{-\infty}$ we have $n^{-12} \geq \eta<(b-a) / 2$, and so

$$
\begin{aligned}
K_{n}\left(f, \frac{a+b}{2}\right) & \geqslant \delta_{n} \int_{0}^{n^{-1 / \alpha}} \Omega(t) \varphi^{\prime \prime}(t) d t \\
& \geqslant \delta_{n} \int_{0}^{n^{-1 / \alpha}} \Omega(t)\left(1-2 c t^{\alpha}\right)^{n} d t
\end{aligned}
$$

Since $t \leqslant n^{-1 / 2}$ and Ω is a modulus of continuity, we have

$$
2 \frac{\Omega(t)}{t} \geqslant n^{1 / \alpha} \Omega\left(n^{-1 / \alpha}\right)
$$

and so

$$
K_{n}\left(f, \frac{a+b}{2}\right) \geqslant \frac{1}{2} \delta_{n^{1}} n^{1 / \alpha} \Omega\left(n^{-1 / x}\right) \int_{0}^{n^{-1 / \alpha}} t\left(\mathrm{I}-2 c t^{\circ}\right)^{\prime \prime} d t
$$

But
therefore, from the preceding inequality it follows that

$$
K_{n}\left(f, \cdot \frac{a ; b}{2}\right)=\frac{1}{4} n^{-1,} \delta_{n} \Omega\left(n^{-1, y}\right)\left(1-\frac{2 c}{n}\right)^{n} \quad \text { for } n \quad \max (\eta, 2 c)
$$

From this inequality and (2.7) we get

$$
\begin{equation*}
\liminf _{n} \frac{\Delta_{n}(\Omega)}{\Omega\left(n^{-1 / 2}\right)}=\frac{e^{2}}{4} \liminf _{n} n^{1} \cdots \delta_{n} \tag{2.9}
\end{equation*}
$$

Finally, using (2.8) and Lemma 2, we find that

$$
1 / \delta_{n}=2 \Omega\left(\frac{b-a}{2}\right) \int_{0}^{r} \phi^{\prime \prime}(t) d t \therefore 2 \Omega\left(\frac{b-a}{2}\right)\left(A(x, 0)(n c) \quad r e^{-m^{2}}\right)
$$

i.e.,

$$
n^{1: \infty} \delta_{n} \geq \frac{1}{2 \Omega((b-a) / 2)\left(A(x, 0) c^{1 \cdots} r^{1}+e^{-u n^{2}}\right)},
$$

and it follows that

$$
\begin{equation*}
\lim _{n} \inf n^{-1 / \alpha} \delta_{n}=\frac{a^{1 / 1}}{2 \Omega((b-a) / 2)} \overline{A(x, 0)} . \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10), we see that

$$
\liminf _{n \rightarrow=} \frac{\Delta_{n}(\Omega)}{\Omega\left(n^{1 / 3}\right)} \frac{c^{1} \cdot e^{2}}{8 \Omega((b-a) / 2) A(x, \overline{0})} 0
$$

and Theorem 2 is proved.

References

1. K. Weierstrass, "Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reelen Veränderlichen," pp. 633-639, Sitzungsberichte der Akademie. Berlin, 1885.
2. E. Landau, Uber die Approximation ciner stetigen Funkionen durch eine ganze rationale Funktion, Rend. Cir. Mat. Palermo 25 (1908), 337-345.
3. R. G. Mamedov, The approximation of functions by generalized linear Landau operators (Russian), Dokl. Akad. Nauk. SSSR 139 (1961), 28-30; Sorict Math. Dokl. 2 (1961), 861-864.
4. V. P. Bui, S. G. Ffdorov, and N. A. Cervakov, On a sequence of linear positive operators (Russian), Truty Moskor. Vish. Tehn. uč. im. N. E. Baumana 139 (1970), 562-566.
5. C. J. de la Valiée-Poussin, Sur lapproximation des fonctions d'une variable réelle et de leurs dérivées par des polynômes et des suites finies de Fourier, Bull. Acad. Sci. Belg. (1908), 193-254.
6. G. M. Mirakian, The investigation of convergence of an approximation procedure (Russian), Issledorania po sorremennim problemam konstruktirnoì teorii funk cil̆, Moscon. (1961), 39-44.
7. O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA 60 (1968), 1196-1200.
8. O. Shisha and B. Mond, The degree of approximation to periodic functions by linear positive operators, J. Approximation Theory 1 (1968), 335-339.
9. J. D. Kbčkić and P. M. Vasić, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) 25 (1971), 107-114.

[^0]: * This author gratefully acknowledges support by the National Science Foundation under grant GP-9493.
 ${ }^{\dagger}$ Present address: Mathematics Research Center, Code 7840, Naval Research Laboratory, Washington, D.C. 20390.

